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Abstract

Pathogenic variation in genes encoding proteins of the cardiac sarcomere is responsible for 30%–40% of cases of hypertrophic cardiomyopathy. The 
main clinical utility of genetic testing is to provide diagnostic confirmation and facilitation of family screening. It also assists in the detection of aeti
ologies, which require distinct monitoring and treatment approaches. Other clinical applications, including the use of genetic information to inform 
risk prediction models, have been limited by the challenge of establishing robust genotype–phenotype correlations with actionable consequences, 
but new data on the interaction between rare and common genetic variation, as well as the emergence of therapies targeting disease-specific patho
genic mechanisms, herald a new era for genetic testing in routine practice.
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Introduction
For >50 years, the term hypertrophic cardiomyopathy (HCM) has been 
used to describe a myocardial disorder defined by an increased left ven
tricular (LV) wall thickness unattributable to abnormal loading condi
tions.1 The familial nature of the disease has been recognized ever 
since the entity was first described, and over recent decades, a large num
ber of rare, predominantly autosomal dominant (AD), causative genetic 
variants have been detected, with the largest subgroup occurring in genes 
that encode proteins of the cardiac sarcomere.2 This discovery has led to 
various attempts to define HCM solely as a disease of the sarcomere, but 
the fact that >50% of patients with a clinical diagnosis have no discernible 
sarcomeric gene variant has led to inconsistency in terminology and dis
ease management. Fortunately, rapid developments in clinical diagnostic 
tools and genetic testing are driving a new approach, in which the pheno
type of increased LV wall thickness is only the first step towards an aetio
logical diagnosis and tailored treatment.

Established genetic causes of 
hypertrophic cardiomyopathy
The first gene to be implicated in causing non-syndromic HCM was 
MYH7,3 which codes for beta-myosin heavy chain, the main constituent 
of the sarcomere thick filament. Additional family studies identified 
disease-causing variants in genes coding for other sarcomere compo
nents including MYBPC3 (myosin-binding protein C), TNNT2 (troponin 
T), and TNNI3 (troponin I).4–6 These discoveries gradually established 
the notion of HCM as a disease of the sarcomere, and the first eight de
scribed sarcomere genes (Table 1) remain those with strongest evidence 
for pathogenicity7 and account for over 90% of genotype-positive cases.

The advent of high-throughput sequencing techniques in the 
mid-2000s8 facilitated candidate gene approaches in large patient co
horts and whole-exome studies in genetically elusive families and 
healthy individuals, which helped to establish accurate minor allele fre
quency estimates necessary for enrichment analyses.9 These ap
proaches have resulted in the discovery of variants in non-sarcomere 
genes with moderate to strong association with HCM, including JPH2 
(junctophilin),10 CSRP3 (cysteine and glycine-rich protein 3),11 FHOD3 
(formin homology 2 domain containing 3),12 ALPK3 (alpha-protein ki
nase 3),13 TRIM63 [tripartite motif containing 63, with autosomal reces
sive (AR) inheritance],14 PLN (phospholamban), and FLNC (filamin C).15

Although HCM is classically considered an AD trait, recent studies 
have highlighted the contribution of AR inheritance, particularly in po
pulations with more prevalent consanguinity. A higher proportion of 
homozygosity was described in Egyptian patients (4.1% vs. 0.1% in a 
European ancestry cohort), particularly in less prevalent causal genes 

such as MYL2, MYL3, and CSRP3. Homozygosity in the recessive 
TRIM63 gene was present in 2.1%, which is five-fold greater than 
European patients.16

Other proposed candidates include genes coding for Z-disc and 
M-band proteins (for example TCAP and OBSCN), but whether variation 
in these genes causes HCM remains mostly unproven.15

Current clinical utility: diagnosis 
and family screening
The finding of a likely pathogenic/pathogenic variant in genes known 
to cause HCM improves diagnostic certainty. Genetic testing is recom
mended in all international guidelines for this purpose17–19 (Graphical 
Abstract). The utility of genetic testing is even greater if there are relatives 
who might benefit from predictive testing to determine their risk for de
veloping HCM.1,18 Relatives who do not carry the variant identified in the 
index case can be largely reassured and be discharged from further 
follow-up, as the risk of developing the condition is similar to that of 
the general population; they should, however, be counselled to return 
for evaluation if any clinical change [e.g. murmur, electrocardiogram 
(ECG) abnormalities, and symptoms] occurs. Conversely, relatives that 
are found to carry a pathogenic or likely pathogenic genetic variant are 
at risk for developing HCM and should be offered interval clinical screen
ing to detect the emergence of clinically overt disease.1,18 The frequency 
of screening depends on age and should be more frequent (up to annu
ally) during adolescence and early adulthood and every 3–5 years later in 
adulthood. While a risk of developing a phenotype can be estimated, the 
differences in phenotype conversion between different genotypes and 
the phenotype severity are more challenging to predict.20 In a recently 
published cohort including adults at start of follow-up, the penetrance 
of disease in a 10–15-year timespan (median 8 years) was substantial 
(46%). Male sex [hazard ratio (HR) 2.9] and ECG abnormalities (HR 4) 
were associated with higher penetrance.21 TNNI3 had the lowest risk 
of penetrance when compared with MYBPC3 (HR 0.19). Importantly, 
no episodes of sudden cardiac death (SCD) occurred in individuals 
who did not fulfil conventional HCM diagnostic criteria.

Estimates of penetrance from population-based genetic screening 
are much lower compared to familial studies. For example, a recent 
publication22 described a penetrance of 18.4% [95% confidence interval 
(CI) 9%–32%] for individuals in the UK Biobank harbouring pathogenic 
or likely pathogenic variants in HCM-associated genes, and a 
meta-analysis described a penetrance of ∼11% in incidentally identified 
carriers in the general population compared to 57% (95% CI 52%–63%) 
for cascade screening.20

In addition to the presence of LV hypertrophy (LVH), a constellation 
of other phenotypic traits has been described in variant carriers, even in 
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those who have not yet developed LVH and do not qualify for a diagnosis 
of HCM. Examples include diastolic dysfunction, abnormal energetics, 
fibrosis, myocardial crypts, long mitral leaflets, myocardial perfusion de
fects, microstructural and electrophysiological abnormalities.23–33 In the 
presence of these findings, some guidelines advise more close follow-up 
(6 monthly or yearly, instead of every 2–3 years).18

In a reproductive medicine context, identifying a pathogenic variant 
allows for preimplantation genetic testing (PGT).34 In this process, em
bryos are generated by in vitro fertilization and those not carrying the 
pathogenic variant are selected for subsequent implantation and preg
nancy. Cardiomyopathies are one of the conditions for which PGT can 
be considered. This usually takes place in specialized referral centres, 
where counselling and discussion with the prospective parents takes 
place, emphasizing the rare potential risk of transferring abnormal em
bryos due to false negative genetic testing results.35 Confirmatory gen
etic testing either during pregnancy (chorionic villus sampling or 
amniocentesis) or after delivery is typically recommended to be sure 

of the actual genotype. These techniques can also be used to test in 
the context of natural conception.

The quest for clinically actionable 
genotype–phenotype associations
After the initial link with sarcomere genes was established, studies 
based on a small number of individuals and families suggested an asso
ciation between individual pathogenic variants and prognosis.36

However, few associations were validated in larger cohorts and many 
remain contested.37 The challenge of establishing definitive genotype– 
phenotype associations based on single variants became clear with the 
recognition of both marked allelic heterogeneity (i.e. pathogenic variants 
are often private to a single family) and marked heterogeneity of expres
sivity (i.e. variants have highly variable clinical manifestations both within 
a single family and across unrelated individuals).38 Consequently, most 
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Table 1 List of the main genes in which variants have been associated with hypertrophic cardiomyopathy, with 
moderate to definitive evidence

Location within the cell/ 
function

Protein Gene Frequency within 
genotype-positive individuals

Level of evidence according to ClinGen 
and mode of inheritance

Sarcomere (contractile) 
proteins

Myosin-binding protein C MYBPC3 40%–50% Definitive (AD)

Beta-myosin heavy chain MYH7 35%–40% Definitive (AD)

Troponin T TNNT2 7%–15% Definitive (AD)

Troponin I TNNI3 5% Definitive (AD)

Tropomyosin TPM1 3% Definitive (AD)

Regulatory myosin light 
chain

MYL2 1%–2% Definitive (AD)

Essential myosin light chain MYL3 1% Definitive (AD)

Actin ACTC1 1% Definitive (AD)

Troponin C TNNC1 <1% Moderate (AD)

Z-Disc proteins and other 
sarcomere associated

Alpha-actinin-2 ACTN2 <1% Moderate (AD)

Alpha-protein kinase 3 ALPK3 ∼2% Definitive (AR). Recent evidence for AD 
inheritance for truncating variants

Formin Homology 2 
Domain Containing 3

FHOD3 1%–2% Not curated (AD)

Muscle LIM protein CSRP3 <1% Moderate (AD)

Tripartite Motif  
Containing 63

TRIM63 Unknown Moderate (AR)

Filamin C FLNC <1% Not curated for (isolated) HCM. Recent 
evidence for AD inheritance for missense 
variants

Four-and-a-half LIM 
domain protein 1

FHL1 <1% Not curated for (isolated) HCM (X-linked)

Calcium handling proteins Phospholamban PLN <1% Definitive (AD)

Junctophilin 2 JPH2 Unknown Moderate (AD)

The protein, gene, and relative prevalence in genotype-positive individuals are included, as well as level of evidence for pathogenicity from ClinGen (www.clinicalgenome.org). Other 
resources recommended to the readers for a more detailed review are GenCC (theGenCC.org) and G2P (https://www.ebi.ac.uk/gene2phenotype). 
AD, autosomal dominant; AR, autosomal recessive; HCM, hypertrophic cardiomyopathy.
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studies in HCM have focused on comparisons between causal genes 
rather than individual variants or, even more simply, on the presence 
or absence of any rare sarcomere gene variant. For gene–gene compar
isons, observations include a tendency to lesser maximal LV wall thick
ness but greater arrhythmic risk in TNNT2; restrictive physiology in 
TNNI339; later disease penetrance in MYBPC3 compared to MYH7; 
and a higher incidence of atrial fibrillation with MYH7.40 In the compari
son of sarcomere-positive with sarcomere-negative individuals, consist
ent findings include an earlier age at presentation by 5–10 years, more 
severe hypertrophy (1–2 mm on average), less frequent LV outflow 
tract (LVOT) obstruction, greater myocardial scar burden, and an in
creased (two-fold) incidence of arrhythmic and heart failure outcomes 
in those with pathogenic sarcomere variants.41–44

A limiting factor with these kinds of comparison is oversimplifica
tion. For example, variants residing in different domains of the same 
protein can produce different phenotypic effects.38 In one example 
of a more nuanced approach, recent work from the Sarcomeric 
Human Cardiomyopathy Registry cohort compared the phenotype 
of truncating (90%) to non-truncating MYBPC345 variants and de
monstrated similar magnitude of hypertrophy and clinical outcomes 
(composite of sudden death, class III/IV heart failure, LV assist device/ 
transplant, and atrial fibrillation). Importantly, while truncating var
iants seemed to cause haploinsufficiency independently of location, 
missense variants clustered mostly in C3, C6, and C10 domains, 
with only those in C10 showing evidence of a haploinsufficiency 
mechanism.

Although some genotype–(endo)phenotype associations have 
been reproducible, integration into clinically meaningful algorithms 
that predict major outcomes (e.g. heart failure and SCD risk) has 
been challenging, due in part to the fact that these correlations occur 
with traits/risk factors that are themselves well-established outcome 
predictors used in the current models (e.g. age and maximal wall 
thickness).

Differential diagnosis of increased 
left ventricular wall thickness
Despite more than six decades of investigation, cardiomyopathy sub
types are still defined by relatively simple clinical traits rather than specific 
pathophysiological mechanisms. In the case of HCM, the defining feature 
is an increase in LV ventricular wall thickness and not, as the name implies, 
definitive proof of cardiomyocyte hypertrophy. Pragmatically, this means 
that the differential diagnosis of HCM should include other common and 
rare genetic traits as well as acquired disorders. Genetic disorders that 
are associated with increased LV wall thickness include Anderson– 
Fabry disease, variant TTR amyloid, PRKAG2 syndrome, and Danon 
disease.18 The genes that cause these conditions (Table 2) are usually 
included in testing panels for HCM. A full review of all such diseases is 
beyond the scope of this article, but they are nevertheless important, 
as the implications for patients and families are profoundly different.

A number of contextual features from history and physical examin
ation can suggest a specific aetiology including patterns of inheritance, 
age at presentation, and extra-cardiac manifestations.46

Autosomal dominant inheritance is characterized by the presence of 
affected individuals in all generations and male-to-male transmission, 
whereas X-linked transmission is defined by the absence of male–male 
transmission and is typified by milder or absent phenotypes in females. 
The observation of a disease inherited only from women to male and fe
male offspring is consistent with disease caused by pathogenic variants in 
mitochondrial DNA.46 Parental consanguinity and the absence of the 
condition in the previous generation are typical of AR conditions.

Non-sarcomeric AD disorders that may result in increased LV wall 
thickness include those of the RAS-MAPK pathway such as Noonan syn
drome. Autosomal recessive causes of LV wall thickening include glycogen 
storage disease (GSD) type II [caused by acid α-1,4-glycosidase (GAA) de
ficiency], GSD IIIA (caused by amylo-1,6-glucosidade/debranching enzyme 
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Table 2 List of the main genocopies of hypertrophic cardiomyopathy, with definitive evidence

Location within the 
cell/function

Protein Gene Disease Level of evidence according to 
ClinGen and mode of 

inheritance

Metabolic regulation AMP-gamma-2 subunit PRKAG2 PRKAG2 syndrome Definitive (AD)

Lysosomal 
membrane/ 
glycogen storage

Lysosomal-associated 
membrane protein 2 
(Danon disease)

LAMP2 Danon Definitive (X-linked)

Lysosome Alpha-galactosidase A 
(Anderson–Fabry disease)

GLA Anderson–Fabry Definitive (X-linked))

RAS-MAPK pathway KRAS Rasopathies Definitive (AD)

SOS1 Definitive (AD)

PTPN11 Definitive (AD)

RAF1 Definitive (AD)

Other Transthyretin TTR Amyloidosis Definitive (AD)

Mitochondrial diseases Various mitochondrial genes and 
variants (e.g. m.3243A>G)

Definitive (AD, AR, and 
matrilineal)

The protein, gene, and level of evidence for pathogenicity from ClinGen (www.clinicalgenome.org) are listed. Other resources recommended to the readers for a more detailed review 
are GenCC (theGenCC.org) and G2P (https://www.ebi.ac.uk/gene2phenotype). 
AD, autosomal dominant; AR, autosomal recessive.
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deficiency), and Friedreich’s ataxia caused by expansions—GAA triplet 
repeats—in the frataxin gene. Examples of X-linked disorders include 
Danon disease, caused by pathogenic variants in the LAMP2 gene (GSD 
type IIB), and Anderson–Fabry disease, a sphingolipidosis caused by patho
genic variants in the α-galactosidase A gene (GLA).

With respect to age at presentation, sarcomeric gene-related disease 
usually presents from adolescence to middle age, although presentation 
in younger children is well recognized.47 Hypertrophic cardiomyopathy 
in neonates and infants is a red-flag for an inborn error of metabolism. 
Diseases of the RAS-MAPK pathway are also more typically manifested 
at paediatric ages. In contrast, TTR-related cardiac amyloidosis is mostly 
a disease of individuals over 60–65 years of age.46

Extra-cardiac features of disease in HCM phenotypes are relatively 
uncommon but are easily overlooked unless specifically sought for on 
questioning or physical examination. Examples include somatic dys
morphism in RAS-MAPK conditions; angiokeratoma, audiological, oph
thalmic, peripheral, and central nervous system abnormalities in 
Anderson–Fabry disease; and skeletal muscle weakness in PRKAG2 
syndrome and mitochondrial disease.46

The establishment of a diagnosis has direct clinical implications as 
some of these conditions can be managed with tailored therapy—e.g. 
enzyme replacement therapy or chaperone therapy for Anderson– 
Fabry disease48 or tafamidis and oligonucleotide RNA interference 
for amyloidosis.49 Specific diagnoses also have prognostic relevance. 
For example, amyloidosis, neuromuscular (e.g. Friedrich’s ataxia), and 
some metabolic conditions have worse outcomes compared to sarco
meric HCM.50

Deep intronic variants, polygenic 
inheritance, and gene–environment 
interactions
Despite increasingly large gene panel tests, ∼60% of HCM patients re
main genotype elusive. Recent work has shown that a small but relevant 
number of such individuals (up to 2%) carry pathogenic variants located 
in MYBPC3 intronic regions that were not previously sequenced and 
which impact on splicing,51–53 mostly by creating cryptic splice sites 
and resulting in frameshifts. This mechanism is particularly important 
in MYBPC3, likely because ∼90% of causal variants are truncating. In re
sponse, genetic testing labs increasingly incorporate intronic regions of 
MYBPC3 as part of the testing panels. For other HCM-associated genes, 
the relevance of deep intronic variants remains to be demonstrated.

As in other cardiovascular diseases, the failure to identify rare var
iants with a large effect in causing disease relates to the contribution 
of polygenic inheritance, potentially modulated by non-genetic or envir
onmental interactions. Recent data support this hypothesis, showing 
that common genetic variation may account for up to 0.34 heritability 
in HCM. This appears higher in sarcomere variant-negative indivi
duals.54,55 The role of polygenic risk scores in predicting outcomes56 re
quires testing in future studies, but the clinical application of whole 
genome sequencing (WGS) will grow due to decreasing costs and 
the advantage of performing a single comprehensive genetic test where 
everything (deep intronic variants, regulatory regions, rare and com
mon variants, etc.) is evaluated at once. The potential advantages of 
WGS need to be balanced by data showing the clinically actionable yield 
for monogenic disease may not be substantially higher than with con
ventional gene panel testing.57 Additionally, incidental genetic findings 
(i.e. risk for cancer, other conditions, and carrier states) will be revealed 
by WGS and require discussion in pretest counselling.

Recently, associations between common disease traits such as obesity, 
hypertension, diabetes, and phenotype severity have been described,58–61

Mendelian randomization analysis has shown a particularly strong associ
ation of diastolic blood pressure to the risk of HCM in sarcomere-negative 
individuals.54 The emergence of data suggesting that the development of 
sarcomere-negative HCM may be influenced by environmental and poly
genetic effects and that these individuals may have a less severe phenotype 
compared to sarcomere-positive HCM, suggest that family screening strat
egies should be more tailored. Relatives of a sarcomere-negative proband, 
in the absence of family history—a concept recently referred to as ‘non- 
familial HCM’—may not need to be screened as frequently as sarcomere- 
positive families.62–64 These data also emphasize the need for proper 
management of cardiac risk factors as potential drivers of polygenic 
disease.

Precision therapy
Small-molecule allosteric cardiac myosin inhibitors are the first disease- 
specific therapies for HCM. This novel drug class was developed based 
on better mechanistic understanding of pathogenic variants in beta- 
myosin heavy chain.65 Common features of these variants were in
creased force generation, higher actin–myosin interacting velocity, 
and greater energy consumption, with a reduced proportion of myosin 
heads in a super-relaxed state.66,67 The first-in-class agent, mavacam
ten, increases the number of myosin heads in a super-relaxed state 
and therefore leads to lower actin–myosin contractile force and lower 
energy consumption. In mouse models carrying myh6 variants, mava
camten attenuated phenotypic development when administered early, 
prior to the development of LVH.68 In patients with symptomatic ob
structive HCM, a landmark Phase 3 trial (EXPLORER-HCM) showed 
that mavacamten improves exercise capacity, symptoms, and LVOT 
gradients in comparison to placebo.69 A subsequently published trial 
(VALOR-HCM) showed a significant reduction of the proportion of 
patients with an indication for septal reduction therapies compared 
to placebo.70 These data led to approval of mavacamten for patients 
with symptomatic obstructive HCM.69 Secondary analyses of the 
EXPLORER-HCM trial suggested that mavacamten may have greater 
benefit in sarcomere-positive patients; however, subgroups were 
underpowered and patients with sarcomere-negative HCM benefited 
from treatment. Larger cohorts are needed to determine whether 
there is differential treatment response to myosin inhibitors based on 
sarcomere variant status.69 Another cardiac myosin inhibitor molecule, afi
camten, has recently completed a Phase 3 clinical trial (SEQUOIA-HCM) 
and demonstrated significant benefit in the primary endpoint of increas
ing peak oxygen consumption and secondary endpoints including func
tional class and LVOT gradients.71

Following promising results in a Phase 2 trial showing a possible 
beneficial effect of mavacamten on N-terminal pro-B-type natriuretic 
peptide and troponin levels compared to placebo,72 Phase 3 trials of 
mavacamten and aficamten are now underway in non-obstructive HCM.

Therapies targeting the genome
There is intense interest in the potential of therapies targeting the 
underlying genetic defect in cardiomyopathies, including gene repair 
mechanisms via CRISPR/cas9, splicing correction, gene replacement, and 
RNA interfering methods leading to gene silencing73,74 (Figure 1). A 
Phase 1b trial to study the safety and tolerability of TN-201 in adults 
with symptomatic MYBPC3 mutation-associated HCM (MyPEAK-1) 
is underway. This dose-finding study aims to investigate the safety, 
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tolerability, pharmacodynamics, and cardiac transgene expression of 
a recombinant adeno-associated virus serotype 9 (aav9) containing a 
myosin-binding protein c transgene in symptomatic adults with HCM 
caused by MYBPC3 truncating variants (NCT05836259, ClinicalTrials. 
gov). Another is the Clinical Study Evaluating a Recombinant Adeno- 
Associated Virus Serotype 9 (rAAV9) Capsid Containing the Human 
Lysosome-Associated Membrane Protein 2 Isoform B (LAMP2B) 
Transgene (RP-A501; AAV9.LAMP2B) in Patients With Danon Disease, 
which will target patients with truncating LAMP2 variants (NCT06092034, 
ClinicalTrials.gov). Gene editing is technically far more challenging, but 
recent examples in other contexts of inherited disease have shown 
feasibility in humans, for example in six TTR amyloidosis patients 
with familial amyloid polyneuropathy.75

Both efficiency and safety are major challenges for translation of these 
therapies into humans. A potential complication of the gene editing ap
proach is off-target effects that could cause somatic cell mutagenesis, in
creasing the risk of cancer.74 Other challenges include immunogenicity of 
the vector, neutralizing antibodies from previous adenovirus exposure, 
and optimal delivery to the cardiomyocyte at subtoxic titres, which are 
dependent on the vector and route of delivery.74 Delivery vectors can 
be either viral—typically adeno-associated vectors (AAVs) for DNA, 
from which AAV9 is known to have cardiac tropism—or lipid nanopar
ticles for RNA (although this has never been achieved for the heart). 
Additional technical challenges include gene size (maximum gene size 
that can fit within an AAV vector is 4.7 kb) and the potential need for 
redosing due to waning efficacy.74

Given these challenges, appropriate selection of which patients or type 
of gene/variants to prioritize for clinical application and trials is crucial. 
The first trials are focused on gene replacement, in part because this 

technique is technically less challenging and more feasible. The establish
ment of the ideal initial target-patient for these therapies will require con
siderations including the genetic potential for more severe disease and a 
stage of the disease that is not advanced enough to limit usefulness (e.g. 
extensive scar) but at the same time not too benign for the patient to be 
submitted to a potentially toxic therapy. If proven to be safe and well tol
erated, these novel therapeutic modalities may in the future be tested on 
at-risk sarcomere variant carriers or at an early disease stage with the 
goal of attenuating phenotypic progression or even preventing disease 
emergence.76 There are a number of important barriers that must be 
overcome to enable this paradigm shift, including the ability to prospect
ively identify variant carriers that are at highest risk for severe outcomes 
to appropriately target therapy and identifying robust biomarkers of dis
ease progression in order to monitor treatment benefit.77

Conclusions
There is a clear role for genetic testing in HCM to obtain diagnostic cer
tainty for probands and to improve the care of at-risk family members. 
Emerging work on the role of common genetic variation and the im
portance of cardiovascular risk factors in disease development offer 
promise for more sophisticated disease models, that will assume great 
relevance with the emergence of personalized approaches including 
sarcomere modulation and genetic modification.

Supplementary data
Supplementary data are not available at European Heart Journal online.

Figure 1 Schematic representing different modalities of nucleic acid therapies in hypertrophic cardiomyopathy. (A) Gene transfer. (B) Exon skipping. 
(C ) Genome editing with the CRISPR/Cas9 system; gene editing can also currently be achieved with base editors. (D) Allele silencing with RNAi. AON, 
antisense oligonucleotide; cDNA, complementary deoxyribonucleic acid; mRNA, messenger ribonucleic acid; pre-mRNA, precursor messenger ribo
nucleic acid; RISC, RNA-induced silencing complex. Reproduced and modified with permission from Maltês and Lopes.73
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